

An Inter-laboratory Study on EPA Methods 537.1 and 533 for Potable and Non-Potable Water PFAS Analyses

Joshua Whitaker, Marnellie Ramos, and <u>Yongtao Li</u>, Eurofins Eaton Analytical, LLC Robert B. Hrabak, Eurofins TestAmerica
Christine Ratcliff and Charles Neslund, Eurofins Lancaster Laboratories Environmental, LLC

www.EurofinsUS.com

More than 3000 per- and polyfluoroalkyl substances (PFASs) are, or have been, on the global market.....

Courtesy to Wang, DeWitt, Higgins & Cousins, Environ. Sci. Technol. 2017, 51(5), 2508-2518.

Sub-classes of PFASs Examples of Number of peer-reviewed Individual compounds* articles since 2002** PFBA (n=4) PFPeA (n=5) 698 PFHxA (n=6) 1081 PFHpA (n=7) 1186 4066 **PFCAso** O PFNA (n=g) $(C_nF_{2n+1}-COOH)$ O PFDA (n=10) 1407 O PFUnA (n=11) 1069 O PFDoA (n=12) 1016 O PFTrA (n=13) 426 o PFTeA (n=14) 654 PFBS (n=4)o PFHxS (n=6) 1081 **PFSAs** o 3507 $(C_nF_{2n+1}-SO_3H)$ o PFDS (n=10) 340 perfluoroalkyl acids O PFBPA (n=4) (PFAAs) PFHxPA (n=6) 33 PFPAs o PEOPA (n=8) 31 (CnF2n+1-PO3H2) PFDPA (n=10) 35 C4/C4 PFPiA (n.m=4) 12 12 C6/C6 PFPIA (n,m=6) **PFPiAso** C8/C8 PFPiA (n.m=8) $(C_nF_{2n+1}-PO_2H-C_mF_{2m+1})$ C6/C8 PFPiA (n=6,m=8) ADONA (CF₃-O-C₂F₆-O-CHFCF₃-COOH) Genx (C₂F₇-CF(CF₃)-COOH) EEA (C₂F₅-O-C₂F₄-O-CF₂-COOH) P-53B (CI-C₆F₁₃-O-C₂F₄-SO₃H) 4 26 PFECAs & PFESAs 6 14

Environmental Science & Technology

PFASs

 $(C_nF_{2n+1}-R)$ $(C_n F_{2n+1} - SO_2 - R)$ EtFBSE (n=4,R=N(C₂H₄)C₃H₄OH) > over 3000 PFASs may **PFAA** o 100s of others have been 4:2 FTOH (n=4.R=OH) precursors 6:2 FTOH (n=6,R=OH) on the global fluorotelomer-based 8:2 FTOH (n=8,R=OH market O 10:2 FTOH (n=10,R=OH) substances O 12:2 FTOH (n=12,R=OH) $(C_nF_{2n+1}-C_2H_4-R)$ 6:2 diPAP [(C₆F₁₃C₂H₄O)₂-PO₂H] 100s of others polytetrafluoroethylene (PTFE) polyvinylidene fluoride (PVDF) fluoropolymers fluorinated ethylene propylene (FEP) others perfluoroalkoxyl polymer (PFA)

 $(C_nF_{2n+1}-O-C_mF_{2m+1}-R)$

PASF-based

substances

PFASs in RED are those that have been restricted under national/regional/global regulatory or voluntary frameworks, with or without specific exemptions (for details, see OECD (2015), Risk reduction approaches for PFASs. http://oe.cd/1AN).

perfluoropolyethers (PFPEs)

MeFBSA (n=4,R=N(CH₂)H)

EtFBSA (n=4,R=N(C2H2)H)

MeFBSE (n=4,R=N(CH₃)C₃H₄OH)

25 134

259

24 116

146

106

375 412 165

23

** The numbers of articles (related to all aspects of research) were retrieved from SciFinder® on Nov. 1, 2016.

Figure 1. "Family tree" of PFASs, including examples of individual PFASs and the number of peer-reviewed articles on them since 2002 (most of the studies focused on long-chain PFCAs, PFSAs and their major precursors.).

Types of PFAS

PFAS

Perfluoroalkyl substances

Polyfluoroalkyl substances

Eaton Analytical

PFAS

Non-polymeric substances

Perfluoroalkyl acids

Perfluoroalkane sulfonyl fluoride-based substances

Fluorotelomer-based substances

Per & polyfluoroalkyl etherbased substances

Polymeric substances

Fluoropolymers
Side-chain fluorinated polymers

Perfluoropolyethers

PFAS

Perfluoroalkyl acids (PFAAs)

Perfluoroalkyl acid (PFAA) precursors

Sulfonamides

Sulfonamidoacetic acids
Fluorotelomer sulfonic acids

Fluorotelomer alchols

riuoroteiornei aicriois

Certain per- and polyfluoroalkyl ether carboxylic acids

Others

Fluoropolymers Perfluoropolyethers

PFAS

Amenable to LC/MS/MS

Not amenable to LC/MS/MS

Current PFAS Method Summary

Method	EPA 537/537.1	EPA 533	SW-846 EPA 8328	SW-846 EPA 8327	ASTM D7979-17	DoD/DoE QSM 5.3	Lab Methods	TOP Assay	TOF Assay
Techniques	RP-SPE LC/MS/MS IS CAL	WAX-SPE LC/MS/MS ID CAL	WAX-SPE LC/MS/MS ID CAL	1:1 MeOH LC/MS/MS Ext CAL	1:1 MeOH LC/MS/MS Ext CAL	WAX-SPE LC/MS/MS ID CAL	WAX-SPE LC/MS/MS ID CAL	Oxidation SPE LC/MS/MS	Combustion IC
Availability	2009 (v1.1)/ 2020 (v2)	2019	Draft	2019	2017	2019	Varies	Varies	Varies
Type of Water	Potable	Potable	Non-potable	Non-potable	Non-potable	Non-potable	Non-potable	Non-potable	Non-potable
Type of PFAS	14/18 analytes	25 analytes	24 analytes?	24 analytes	14+7 analytes	25 analytes	~40 analytes	All perfluoro- alkyl acids	All organo- fluorine
Type of analysis	Quantitative	Quantitative	Quantitative	Quantitative	Quantitative	Quantitative	Quantitative	Semi-quant. Screening	Semi-quant. Screening
Pros & Cons	Validated Limited S.C.	Validated Limited L.C.	Draft	Validated Faster Higher RLs	Validated Faster Higher RLs	Validated	More PFAS Inconsistent	All perfluoro- alkyl acids	Surrogate of all fluorine compounds
MRLs	~2 ng/L	~2 ng/L	~2 ng/L	10-50 ng/L	10-50 ng/L	~2 ng/L	~2 ng/L	ng-μg/L	μg-mg F/L

PFAS Have Been around for a Long Time.

National Leadership Summit & Engagement, 2018 PFAS Action Plan, 2019 PFOS Produced, 1949 EPA 537, 2008-2009 No buy/use PFOS AFFF Implemented, 1969 2016 EPA 537.1, 2018 Phase out PFOS EPA & 3M, 2002 **DuPont**, 2013 EPA 533, 2019 GenX, 2017 Lifetime HA, 2000s 1940s 1950s 1960s 1970s 1990s 1980s 2010s 2020s Homologues Produced PFAS by LC/MS/MS UCMR5 2010-2015 PFOA PFOA Produced, 1940s L.C. PFAS Replaced with S.C. PFAS, 2002 1950s-1970s 1980s-1990s Stewardship Program 2023-2025 CCL3 & UCMR3 (6 PFAS) Federal 2013-2015 MCLs? State Lists & Guidance Levels, 2009/2015 -Source water assessments

Drinking Water PFAS Regulations

USEPA

- 2013-2015 UCMR3 for 6 PFAS with MRLs of 10-90 ng/L by EPA Method 537
- Health Advisories (2016): PFOA/PFOS or PFOA + PFOS = 70 ng/L
- 2023-2025 UCMR5 for 29 PFAS with MRLs of 2-8 ng/L by EPA Methods 537.1 and 533
- MCLs for PFOA, PFOS, and other PFAS?

States with DW Regulations as June 30, 2021

- Established / interim / proposed MCL: NJ, NH, VT, MA, NY, WI, ME
- Established NL: CA
- Proposed HBV / AL / TL: MI, MN, OH, RI, NC, OR, CO, IL

Examples

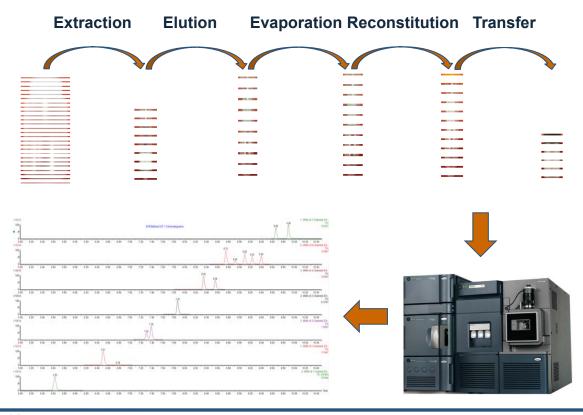
■ Individual PFAS NJ MCL: PFNA = 13 ng/L, PFOA = 14 ng/L, PFOS = 13 ng/L

Sum of PFAS
MA MCL: PFOA + PFHxS + PFOS + PFHpA + PFNA + PFDA = 20 ng/L

Proposed UCMR5 Timeline of Activities

2022	2023	2024	2025	2026
Pre-sampling Activity by EPA		Post-sampling Activity		
 Manage Lab Approval Program Organize Partnership Agreements and State Monitoring Plans Begin PWS SDWARS registration/ inventory Review GWRMP submittal Conduct outreach/trainings 	Provide Implement Post de PWS Sample All large people All small and 10 800 sm	nplementation Act le compliance assistment small system ata quarterly to NC Collection; Laborat Reporting ge systems serving m s; all systems serving b 1,000 people; hall systems serving	tance monitoring COD tory Analysis; nore than 10,000 etween 3,300	PWSs, Laboratories Complete resampling, as needed Conclude data reporting EPA Complete upload of UCMR 5 data to NCOD

Proposed UCMR5 29 PFAS (2023-2025)



	PFBA	PFPeA	PFHxA	PFHpA UCMR3, 10 ng/L	PFOA UCMR3, 20 ng/L
	PFNA UCMR3, 20 ng/L	PFDA	PFUnA	PPDoA	PFBS UCMR3, 90 ng/L
EPA 533 (2-5 ng/L)	PFPeS	PFHxS UCMR3, 30 ng/L	PFHpS	PFOS UCMR3, 40 ng/L	PFEESA
	4:2 FTS	6:2 FTS	8:2 FTS	HFPO-DA	ADONA
	9CI- PF3ONS	11CI- PF3OUdS	PFMBA	PFMPA	NFDHA
EPA 537.1 (5-8 ng/L)	MEtFOSAA	NMeFOSAA	PFTrDA	PFTeDA	

EPA 537.1 vs. EPA 533

Method	EPA 537.1	EPA 533
250 mL samples	14 days Trizma pH 6.5 - 7.5	28 days ammonium acetate pH 6 - 8
1 mL extracts	28 days 96% MeOH/water,	28 days 80% MeOH/water
IS / IPS	Internal standards unextracted	Isotope performance standards unextracted
SS / IDA	Surrogate standards extracted	Isotope dilution analogues extracted
Calibration	Internal standard calibration	Isotope dilution calibration
QC	Typical	Typical

EPA 537.1 and 533 Applications

- Drinking water utilities are often involved in two types of analyses.
 - Finished drinking water quality compliance
 - Source water assessments
- ➤ EPA Methods 537.1 (evolving from 537) and 533 were developed and validated as drinking water methods.
 - What are the main challenges for drinking water analyses?
 - Relatively low EPA 537.1 surrogate NEtFOSAA-d5 recoveries
 - Field sample (FS) and field reagent blank (FRB) bottles switched
 - Are these methods applicable for source water assessments?
 - What are the main challenges for non-potable water analyses?
 - How to resolve these challenges?

Inter-Laboratory Study Water Matrices

RW1	Native (n = 1)	2 ng/L (n = 4)	RW2	Native (n = 1)	50 ng/L (n = 4)
DW1	Native (n = 2)	10 ng/L (n = 4)	DW2	Native (n = 2)	10 ng/L (n = 4)
GW1	Native (n = 2)	10 ng/L (n = 4)	GW2	Native (n = 2)	10 ng/L (n = 4)
SW1	Native (n = 2)	10 ng/L (n = 4)	SW2	Native (n = 2)	10 ng/L (n = 4)
WW1	Native (n = 2)	50 ng/L (n = 4)	WW2	Native (n = 2)	50 ng/L (n = 4)

Inter-Laboratory Study Water Matrices (Cont'd)

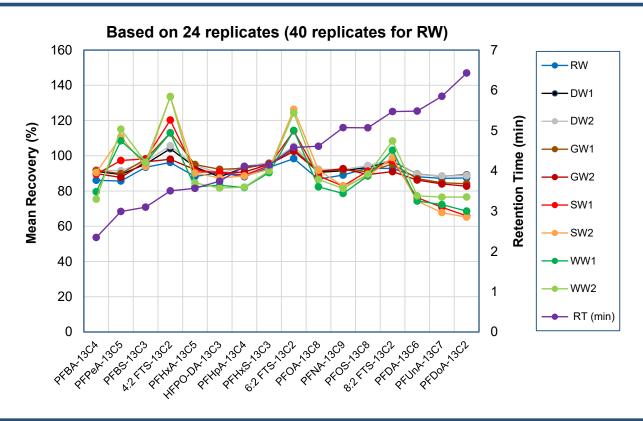
Matrix	DW1	DW2	GW1	GW2	SW1	SW2	WW1	WW2
рН	6.8	7.2	7.3	7.4	7.3	6.7	7.3	7.2
Free chlorine (mg/L)	0.86	0.86	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
TOC (mg/L)	0.52	0.52	0.86	0.43	3.1	5.8	2.4	3.7
Total hardness as CaCO ₃ (mg/L)	401	563	257	256	278	122	412	324
Total alkalinity as CaCO ₃ (mg/L)	276	275	208	320	214	109	276	213
Chloride (mg/L)	147	289	38	37	33	13	239	182
Sulfate (mg/L)	60	60	28	27	39	4.6	94	54
Nitrate as nitrogen (mg/L)	< 1.0	< 1.0	1.7	2.1	1.8	< 1.0	11	13
HPC (MPN/mL)	NA	NA	311	372	650	1000	440	623

Mean Native Concentrations ± SD (ng/L)

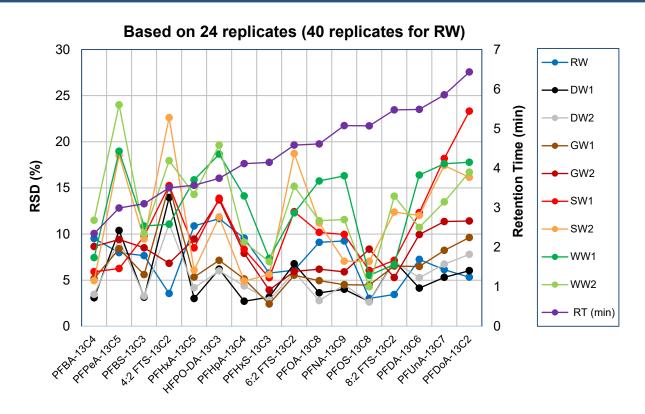
Analyte	Method	DW1	DW2	GW1	GW2	SW1	SW2	WW1	WW2
PFBA	533	3.2 ± 0.3	3.2 ± 0.3	4.5 ± 0.3	4.6 ± 0.5	2.0 ± 0.3	2.8 ± 0.5	6.9 ± 1.8	7.8 ± 2.9
PFPeA	533	1.7 ± 0.1	1.7 ± 0.2	0.9 ± 0.1	0.8 ± 0.1	1.4 ± 0.3	1.4 ± 0.3	20.3 ± 1.7	15.4 ± 1.2
DEDO	533	2.4 ± 0.1	2.4 ± 0.2	5.4 ± 0.4	5.2 ± 0.4	1.3 ± 0.7	0.9 ± 0.5	3.5 ± 0.3	4.0 ± 0.6
PFBS	537.1	2.5 ± 0.2	2.5 ± 0.2	5.5 ± 0.2	5.5 ± 0.4	1.4 ± 0.8	0.9 ± 0.5	3.5 ± 0.7	4.0 ± 1.5
	533	2.0 ± 0.1	2.0 ± 0.2	1.0 ± 0.1	0.9 ± 0.1	0.9 ± 0.6	1.0 ± 0.6	14.9 ± 1.7	15.9 ± 1.7
PFHxA	537.1	1.6 ± 0.9	2.1 ± 0.2	0.7 ± 0.4	0.8 ± 0.5	1.0 ± 0.6	1.1 ± 0.7	14.7 ± 0.8	15.5 ± 1.1
PFHpA	533	1.8 ± 0.2	1.9 ± 0.2	1.0 ± 0.1	0.8 ± 0.1	ND	1.1 ± 0.2	1.8 ± 0.2	1.5 ± 0.3
·	537.1	1.5 ± 0.9	1.5 ± 0.9	ND	ND	ND	1.1 ± 0.6	2.0 ± 0.2	1.5 ± 0.3

Mean Native Concentrations ± SD (ng/L)

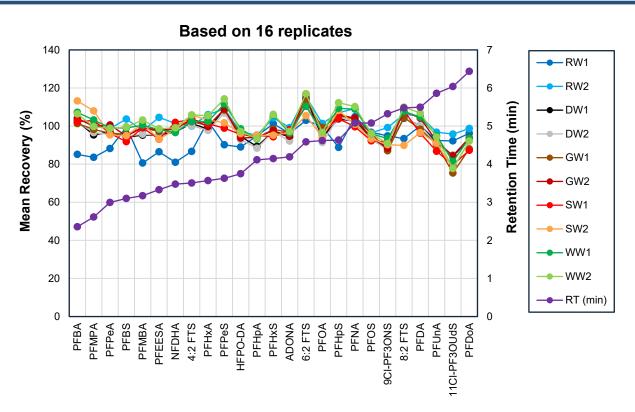
Analyte	Method	DW1	DW2	GW1	GW2	SW1	SW2	WW1	WW2
DELL	533	1.2 ± 0.1	1.2 ± 0.1	0.8 ± 0.1	0.9 ± 0.1	0.7 ± 0.4	ND	2.9 ± 0.4	5.5 ± 0.6
PFHxS	537.1	ND	1.0 ± 0.6	0.8 ± 0.5	0.7 ± 0.5	0.9 ± 0.6	ND	3.2 ± 0.3	5.9 ± 0.7
DE0.4	533	9.6 ± 0.8	9.4 ± 0.7	3.0 ± 0.3	2.8 ± 0.2	0.8 ± 0.5	1.9 ± 1.1	4.0 ± 0.5	3.8 ± 0.6
PFOA	537.1	9.7 ± 0.8	10.1 ± 0.6	2.8 ± 0.2	2.8 ± 0.2	1.0 ± 0.6	2.7 ± 0.2	4.6 ± 0.5	3.9 ± 0.3
DE00	533	ND	ND	ND	ND	1.1 ± 0.7	1.0 ± 0.6	2.5 ± 0.3	9.6 ± 0.6
PFOS	537.1	ND	ND	0.7 ± 0.6	0.7 ± 0.6	1.2 ± 0.9	1.1 ± 0.8	3.1 ± 0.9	9.4 ± 1.1
PFNA	533	ND	ND	ND	ND	ND	0.7 ± 0.5	ND	ND
	537.1	ND	ND	ND	ND	ND	ND	0.7 ± 0.3	ND


EPA 533 IDA Recoveries

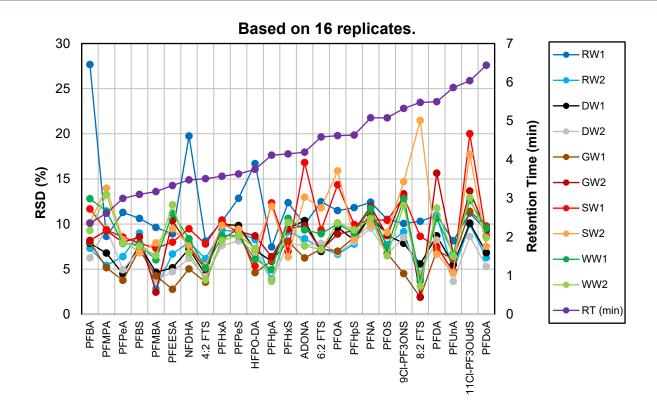
- All multi-lab IDA recoveries were within 50-200%.
- The SW and WW matrices resulted in slightly low recoveries for long-chain IDA.
 - PFDA-13C6
 - PFUnA-13C7
 - PFDoA-13C2
- The WW matrices significantly affected IPS-PFBA-13C3 and IDA-PFBA-13C4 peak areas.


EPA 533 IDA %RSD

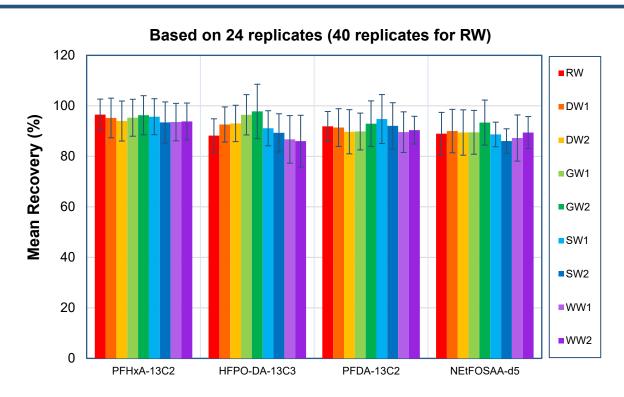
- Single lab RSD were ≤20%.
- The multi-lab IDA RSD were generally ≤20%.
- The SW and WW matrices resulted in relatively higher RSD.
 - PFDoA-13C2 = 23% for SW1
 - 4:2 FTS-13C2 = 23% for SW2
 - PFPeA-13C5 = 24% for WW2


EPA 533 Analyte Recoveries

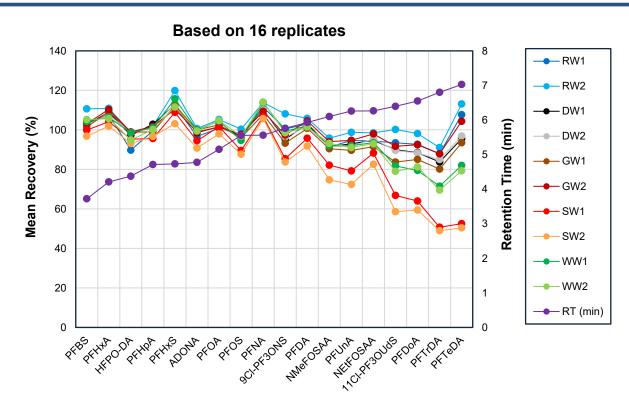
- All multi-lab PFAS recoveries were within 70-130%.
- The SW and WW matrices resulted in slightly low recoveries for long-chain PFAS.
 - PFUnA
 - 11CI-PF3OUdS
 - PFDoA
- PFMPA recoveries depended on the selected IDA.


EPA 533 Analyte %RSD

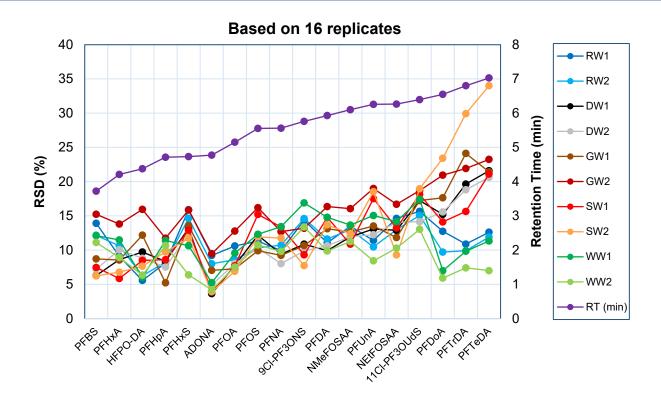
- Single lab RSD were ≤20%.
- The multi-lab PFAS RSD were generally ≤20%.
- > 8:2 FTS = 22% for SW2
- PFBA spiked at 2 ng/L = 28% for RW1
 - Lab D MRL = 5 ng/L


EPA 537.1 Surrogate Recoveries and %RSD

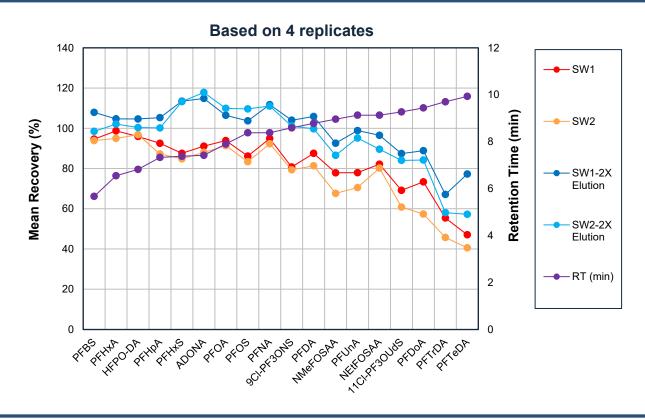
- The multi-lab SS recoveries were within 70-130%.
- The SS recoveries slightly trended lower from PFHxS-13C2 to NETFOSAA-d5.
- The multi-lab RSD were within 10%.


EPA 537.1 Analyte Recoveries

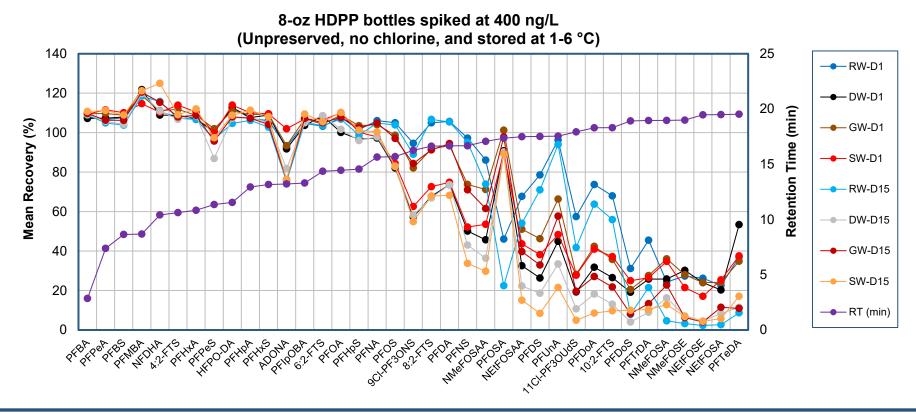
- The multi-lab PFAS recoveries were within 70-130% except
 - 11CI-PF3OUdS
 - PFDoA
 - PFTrDA
 - PFTeDA
- SW1 and SW2 resulted in lower recoveries for these long-chain PFAS.


EPA 537.1 Analyte %RSD

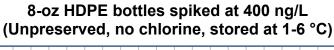
- Single lab RSD were <20%.</p>
- The multi-lab PFAS RSD were generally <20% except</p>
 - PFDoA
 - PFTrDA
 - PFTeDA
- SW2 resulted in higher RSD for these long-chain PFAS.
 - SW2 contained the highest TOC and HPC contents.

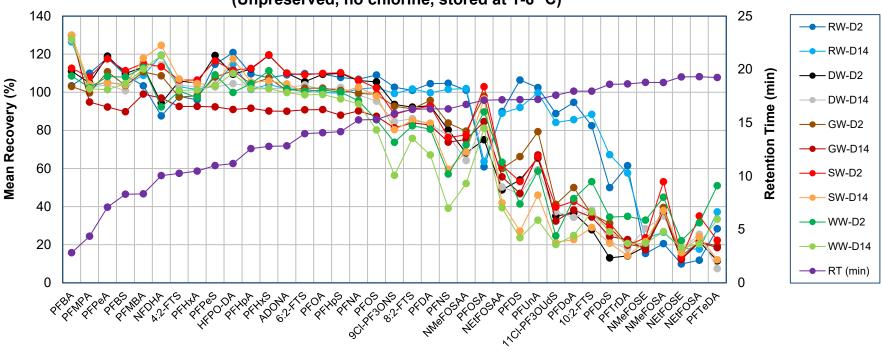

EPA 537.1 Experience

- Low recoveries (50-69%) of SS NEtFOSAA-d5 were often observed for a small fraction of field samples.
 - Reanalysis
 - Re-extraction
 - Re-collection
- Long-chain PFAS recoveries could be improved by enhancing elution.



Bottle Surface Adsorption Losses




Bottle Surface Adsorption Losses (Cont'd)

Conclusions

- EPA 537.1 and 533 are sensitive and robust drinking water methods.
 - Batch QC failures are rare.
 - 2 ng/L or lower MRLs can be achieved for most PFAS of interest. Slightly higher MRLs (PFBA, PFHpA, 6:2 FTS, etc.) may be applicable for some labs.
 - Field reagent blank (FRB) contamination was rarely observed. Most FRB failures were related to switching bottles.
 - Carryover contamination from very high PFAS concentration samples was occasionally observed.
 - The most common EPA 537.1 QC failure was relatively low SS-NEtFOSAA-d5 recoveries, < 70%.

Conclusions (Cont'd)

- EPA 537.1 and 533 are generally applicable for source water assessments Pristine GW, SW, and treated WW matrices.
- EPA 533 is more robust in tolerating matrix interferences.
 - ESI suppression to PFBA and its IPS and IDA can be caused by high concentration common inorganic anions and/or polar organic compounds extracted particularly from WWTP effluents.
 - Sufficient rinsing of sample bottles and SPE cartridges with reagent water may be necessary.
 - It may be critical to choose appropriate IDA for those PFAS without their own labeled analogues available (e.g., PFMPA).

Conclusions (Cont'd)

- EPA 537.1 is less robust in extracting long-chain PFAS (C10 and above) from difficult SW and WW matrices.
 - Adsorption losses of long-chain PFAS are a primary challenge, which can be enhanced by high concentration TOC and biological contents in SW and WW matrices.
 - Enhanced rinsing of sample bottles and SPE cartridge elution may be necessary.
 - Improved recoveries of long-chain PFAS was observed by increasing the elution solvent volumes.
- Most contents will be published in AWWA Water Science.

Yongtao (Bruce) Li Yongtao.Li@EurofinsET.com 574.472.5562

Eurofins Eaton Analytical, LLC www.EurofinsUS.com